Central Limit Theorem for the Third Moment in Space of the Brownian Local Time Increments

نویسنده

  • YAOZHONG HU
چکیده

where η is a N(0, 1) random variable independent of B and L denotes the convergence in law. This result has been first proved in [3] by using the method of moments. In [4] we gave a simple proof based on Clark-Ocone formula and an asymptotic version of Knight’s theorem (see Revuz and Yor [9], Theorem (2.3), page 524). Another simple proof of this result with the techniques of stochastic analysis has been given in [11]. The following extension of this result to the case of the third integrated moment has been proved recently by Rosen in [12] using the method of moments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Local Limit Theorem: A Historical Perspective

The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...

متن کامل

A CLT for the third integrated moment of Brownian local time increments

Let {Lt ; (x, t) ∈ R1 ×R1 +} denote the local time of Brownian motion. Our main result is to show that for each fixed t ∫ (L t − Lt )3 dx− 12h ∫ (L t − Lt )Lt dx h2 L =⇒ √ 192 (∫ (Lt ) 3 dx )1/2 η as h → 0, where η is a normal random variable with mean zero and variance one that is independent of Lt . This generalizes our previous result for the second moment. We also explain why our approach w...

متن کامل

Another approach to Brownian motion

For the partial sums Sn = Y1 + . . . + Yn of a centered stationary strongly mixing sequence {Yi} with finite second moment, the well-known sufficient conditions for the central limit theorem are that Var(Sn)/n is slowly varying as n → ∞ and the sequence {S2 n/σn} is uniformly integrable (σn = Var(Sn)). The conditions are checkable under various mixing conditions and they lead to the central lim...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010